Where do words occur?

Where do words occur?

After acing their midterm exams, three University of Texas Longhorns went to Padre Island with high hopes for a relaxing, and cheap, Spring Break on the beach. However, when they arrived they learned that there was a monster truck rally in town—one of those celebrations of bravado where guys weld rocket engines to tractors and then roll around crushing lesser vehicles. The festivities were in full swing so of course all the hotels were jam-packed with students from Texas A&M University, which had wisely postponed midterms. To their dismay the only hotel room the Longhorns could find cost $300 per night. So they each shelled out $100 and went up to the suite to rest and reconsider their plans for the week.

Now the hotel manager had found them to be the most affable of chaps and he sympathized with their plight, so he decided to give them a break. He sent Billy the bellboy up with a $50 cash discount. Alas, Billy was something of a scalawag. He had already taken offense that the Longhorns had not tipped him for showing them the elevator and now, to add injury to insult he was getting a headache trying to figure out how to divide $50 by three. He finally decided to pocket a well-deserved $20 “thank-you” for himself and gave the Longhorns $30. They each got $10.

It was not long before Billy was recounting his exploits to Betsy-Sue, the waitress down at the sports bar. To his profound regret, however, an Aggie—that’s what they call the scholars from Texas A&M University—was also there and overheard the story. When the Aggie realized that an injustice was occurring, he grabbed Billy by the scruff of the neck and advised him to return the funds. “You soft-soled, weak-kneed, yellow-bellied, lily-livered, piece-of-junk driving scalawag!” he said, with his last insult—the demeaning of Billy’s vehicle—drawing a collective gasp from the room. “Give the men their money back!”

Billy hesitated, wincing with embarrassment, at which point he was promptly picked up and shaken upside down until his pockets were emptied of, among various and sundry other items, $20. Betsy-Sue began picking through the assortment, but suddenly caught herself.

“Wait a second!” she declared. “There is still $10 missing.”

“No there’s not!” Billy cried, “I only got a $20 tip!”

“Well you gave each of the guys $10, right?”

“That’s right. That’s fair!”

“Well that means each of them paid $90 for the room, which comes to $270, and then they ‘gave’ you a $20 tip. But that only comes to $290. So where’s the other $10?”

“What?! No…I don’t have it!” Billy wined in horror.

“Yes…you…do!” said the Aggie, giving Billy a vigorous shake with each word. “Cough…it…up!”

Where was the missing money? They went and got the Longhorns, but they didn’t have it either. Everyone was stumped.

Providentially, two seasoned gulf fishermen had watched the drama unfold from a side table. They figured out where the missing money was, so one of them stood up, corrected their math, and explained the misunderstanding to everyone’s satisfaction. Then, since he had their attention, he launched into a 45-minute speech on the difference between knowledge and wisdom. He told them that he wanted them to think carefully about what they were living for and to consider what they would say someday when they gave an account to their Creator. He quoted from the Bible:

Rejoice, O young man, in your youth, and let your heart cheer you in the days of your youth. Walk in the ways of your heart and the sight of your eyes. But know that for all these things God will bring you into judgment. Remove vexation from your heart, and put away pain from your body, for youth and the dawn of life are vanity. (Ecclesiastes 11:9-10)

This moved everyone deeply. The Longhorns decided that they wanted to show greater care for creation. So they checked out of the hotel, built shanties outside the truck rally, and protested the excessive production of greenhouse gases. This inspired the Aggies to return to campus and build a clean-burning truck that ran entirely on solar energy and rice but that could still crush anything in its path. Billy, meanwhile, turned from his mischievous ways, married Betsy-Sue, and became a powerful businessman, selling whole fleets of the Rice-Roaving Thunder-Thrashers—R2T2’s he called them.

And they all remembered what the old fishermen had said, that some words are absolute and unchanging, providing a standard against which all else is measured. Although people can get confused, somewhere there is a bottom line, a firm foundation to either build upon or be broken upon. The fishermen had also told them that they could see the creation itself as a book that reveals truths about its Author.

The Book of Nature

Many, many scientists have come to the same conclusion. Italian astronomer and physicist Galileo Galilei (1564-1642) referred to nature as a book that we are invited by God to study. He realized that even hundreds of the keenest minds could study nature for thousands of years and still not tire of learning what God had revealed “in the open book of the heavens.”[i] He said it was written in the language of mathematics:

Philosophy is written in this grand book the universe, which stands continually open to our gaze.  But the book cannot be understood unless one first learns to comprehend the language and to read the alphabet in which it is composed. It is written in the language of mathematics, and its characters are triangles, circles and other geometric figures, without which it is humanly impossible to understand a single word of it; without these, one wanders about in a dark labyrinth.[ii]

Although the universe might at first appear to be filled with lots of meaningless data, if we listen carefully enough, suddenly all that data can be compressed, brought into focus, and translated into elegant English sentences like “Force equals mass times acceleration” and “Energy equals mass times the speed of light squared”. Remember that Einstein called such comprehension miraculous.

As it turns out, we can most effectively define science as the study of patterns in nature and society.[iii] (Galileo used the word philosophy here in its classical sense—“love of wisdom”—rather than in the materialistic/naturalistic sense, which we might simply call “love of navel”.) For example, chemists study patterns among the elements, leading to the development of tools such as periodic tables. Biologists study patterns among organisms, resulting in charts such as the one for taxonomic rank: domain, kingdom, phylum, class, order, genus, and species. Astronomers study patterns among stars. Economists study patterns in the production, distribution, and consumption of goods and services. Psychologists study patterns in human behavior. Physicists study patterns in matter and energy, discovering such sentences as “F = MA” and “E = MC2”. We use the verb equal to indicate the presence of a pattern, where one set of words matches the other.

For that matter, math by itself, apart from its reflection in nature, provides an unending supply of mysteries to be explored. Some equations have taken centuries to solve even after many mathematicians have devoted their careers to finding the solutions. In the past generation alone we have seen the solutions to two such equations: Fermat’s Last theorem, first posed in the 1630s, and the Poincaré Conjecture, first posed in 1904. In each case there has been a long search for what was assumed to be absolute, objective truth.

Mathematicians have often discovered such truths long before scientists discovered the same patterns written, as Galileo said, in nature. Some of the patterns are simple, such as the curve of a seashell or the branching of a tree, both of which follow what we call the golden ratio,[iv] 1.618…, which is an irrational number, like pi. Other patterns, such as the changes in a quantum wave function, are so complex that they use imaginary numbers, as discovered by physicist Erwin Schrödinger. Such equations describe and reveal the profound depth of rationality in the cosmos. As Astronomer Royal Sir Martin Rees, Royal Society Research Professor at Cambridge University, put it, “Science advances by discerning patterns and regularities in nature, so that more and more phenomena can be subsumed into general categories and laws.”[v]

These patterns are not just written in nature. They form the very background and context for nature—even for space itself. In their book We Have No Idea, Jorge Cham and Daniel Whiteson, professor of experimental particle physics at the University of California, Irvine, talk about how space can only be understood mathematically:

Space is definitely not an empty void and it is definitely not just a relationship between matter. We know this because we have seen space do things that fit neither of those ideas. We have observed space bend and ripple and expand.[vi]

Space bends and ripples and expands in relation to what? To a nonphysical mathematical grid. The heavens themselves are a medium for profound creative meaning. That’s why so many scientists, such as German Astronomer Johannes Kepler (1571-1630), a friend of Galileo’s, referred to the heavens as a book.

I was merely thinking God’s thoughts after him. Since we astronomers are priests of the highest God in regard to the book of nature, it benefits us to be thoughtful, not of the glory of our minds, but rather, above all else, of the glory of God.[vii]

Kepler believed God wanted us to study and understand these thoughts. “Those laws [of nature] are within the grasp of the human mind; God wanted us to recognize them by creating us after his own image so that we could share in his own thoughts.”[viii]

Similarly, Anglo-Irish chemist Robert Boyle (1627-1691), considered to be one of the founders of the experimental scientific method, found nature to be a source of divine revelation. Perhaps his most famous quote is “Nature abhors a vacuum.” He discovered what chemists call Boyle’s law, which governs the inversely proportional relationship between the volume and pressure of gasses. He looked at chemistry and saw a book available to be translated:

And when with excellent Microscopes I discern in otherwise invisible Objects the Inimitable Subtlety of Nature’s Curious Workmanship; And when, in a word, by the help of Anatomicall Knives, and the light of Chymicall Furnaces, I study the Book of Nature, and consult the Glosses of Aristotle, Epicurus, Paracelsus, Harvey, Helmont, and other learn’d Expositors of that instructive Volumne; I find my self oftentimes reduc’d to exclaim with the Psalmist, How manifold are thy works, O Lord? In wisdom hast thou made them all.[ix]

Like Kepler, he believed that God inspired and invited people to see his work in creation. “If the omniscient author of nature knew that the study of his works tends to make men disbelieve his Being or Attributes, he would not have given them so many invitations to study and contemplate Nature.”[x]

The more scientists have discovered, the deeper and more profound the mathematical discoveries have come. As one of the most significant physicists of the twentieth century, Englishman Paul Durac, put it:

It seems to be one of the fundamental features of nature that fundamental physical laws are described in terms of a mathematical theory of great beauty and power, needing quite a high standard of mathematics for one to understand it. You may wonder: Why is nature constructed along these lines? One can only answer that our present knowledge seems to show that nature is so constructed. We simply have to accept it. One could perhaps describe the situation by saying that God is a mathematician of a very high order, and He used very advanced mathematics in constructing the universe. Our feeble attempts at mathematics enable us to understand a bit of the universe, and as we proceed to develop higher and higher mathematics we can hope to understand the universe better.[xi]

Even scientists who do not attribute scientific explanations to God still talk about it as language. As Richard Feynman, another one of the greatest physicists of the twentieth century, put it:

To those who do not know mathematics it is difficult to get across a real feeling as to the beauty, the deepest beauty, of nature … If you want to learn about nature, to appreciate nature, it is necessary to understand the language that she speaks in.[xii]

As far as physicists can tell, the physical laws and constants of nature are uniform across the universe. If they were not uniform, then perhaps the explanations could be called descriptive of nature rather than prescriptive. That is to say that instead of being governing laws they could simply be called generalized observations. Therefore, many scientists have tried to find exceptions to this uniformity. But as Richard Muller, professor of physics at the University of California, Berkley, explains, they have always failed.

The equations that we have in physics today—all those that are part of the standard physics, the ones that have been verified experimentally—have the property that they work everywhere. Some people think this is amazing enough that they spend their careers looking for exceptions. They look at things that are very far away, such as distant galaxies or quasars, hoping to find that the laws of physics are a little bit different. So far, no such luck.[xiii]

Implications aside, scientists take it for granted that wherever they look in the cosmos, whether they look through a telescope or through a microscope, they will eventually rational explanations. Consider, for example, the following chart.

The point is that all this information that we discover in nature is just as objective and useful as a block of iron ore. It takes rational creative minds at least ten years of study before they can begin to comprehend some of this information. Yet it is simply there, governing the universe, available to be comprehended. Astronomer Royal Martin Rees wrote a book, Just Six Numbers, about how the entire universe depends for its existence upon being finely tuned to six numbers. For example, the number called  Ω (omega), represents the amount of matter in the universe. Omega equals 1, and Rees says if it were greater than 1 then the universe would have collapsed long ago, but if it were less than 1 no galaxies would have formed.

A few basic physical laws set the ‘rules’; our emergence from a simple Big Bang was sensitive to six ‘cosmic numbers’. Had these numbers not be ‘well tuned’, the gradual unfolding of layer upon layer of complexity would have been quenched.[xiv]

Are we saying that rationality governs the universe? Yes, that’s exactly what we’re saying. The one and only reason to deny this conclusion is due to an aversion to spirituality. Yet truth comes at us from every direction. “Why do you run around looking for the truth?” asked Laozi. “Be still, and there it is—in the mountain, in the pine, in yourself. Do you imagine the universe is agitated? Go into the desert at night and look at the stars. The practice should answer the question.”

A Single Book With Many Chapters

These mathematical patterns that we discover in nature form a single book. Just as you can’t have only one species of fish, or only one word in a language, or only one baseball player on a team, so also you can’t have just one branch of mathematics or logic or rationality. It is all bound together as a single phenomenon and no one part of it can be taken out of context and isolated. Although scientists may only study one branch of it at a time, we know that all the branches—all the diverse patterns—grow from the same source, comparable to how the whole universe grew from a big bang. In fact, this is a mathematical fact, proved by German mathematician Georg Cantor in 1878.

Cantor used a simple proof to show that, for example, a 2-cm line segment has just as many mathematical information on it as there is inside a cube the size of the Milky Way—that they both have the same infinite amount of data. “Je le vois, mais je ne crois pas!”[xv] he wrote to his friend and fellow mathematician, Richard Dedekind. On the one hand, it was dazzling to comprehend. On the other hand, it is something that we are all very familiar with. For it is the same reason that children can take in scads of electromagnetic data through their eyes—quadrillions of photons—and then learn to translate it all into short little words like red and blue and yellow. Those small words compress massive amounts of data. And it’s the same reason that Isaac Newton was able to compress massive amounts of data into a short sentence like “Force equals mass times acceleration.” And its the same reason that all the complex, dynamic data three-dimensional human body—complete with its respiratory system, its digestive system, its immune system, etc.—can be translated into a linear sequence of about three billion digits (about 262,000 pages in a book[xvi]) on a DNA molecule, which is about 2 inches long. Information is infinitely compressable.

But the implications of Cantor’s discovery go far deeper. To understand them, consider this riddle that uses a geometric figure called the Möbius Strip. In Avengers: Endgame Tony Stark, a.k.a. Ironman, used a Möbius Strip to unlock the secret to time travel. To make one, take a regular piece of printer paper and cut off a one-inch piece lengthwise, so that you have a one by eight-and-a-half ribbon of paper. If you tape the ends together then you have a loop. But if you twist one end of it half a turn before taping it together, then you have a Möbius Strip. Now here is the riddle:  How many sides does it have—one or two?

You can draw one line continuously along the entire ribbon without ever having to pick up your pencil.  But how can it possible have just one side?  Consider not just the paper object but the idea that it represents. Where is the missing side?

It’s a trick question, similar to Betsy-Sue’s question about the missing $10. In that situation she saw the $20 “tip” from the wrong context—as something given by the 3 students rather than something taken from them. If, instead of adding it to the $270 as something they gave, she had subtracted it from the $270 as something Billy took, then that would have equaled the $250 that the hotel manager kept. Thus each student paid about $83.33 to the hotel and $6.67 to Billy. (Is it any wonder that company executives have sometimes been able to rob their own people in while hiding the thievery in plain sight?) So also here, we’re seeing the “sides” of the Möbius Strip from the wrong context. We asked a question about a two-dimensional representation (the two-dimensional ribbon/plane of the Möbius Strip) using the language and vantage point of three-dimensional space. That does not compute. That is to say that, strictly speaking, the word “side” only applies to three-dimensional objects; two-dimensional concepts do not have any sides at all. For example, if you stack a thousand sheets of paper on each other then you’ll get a three-dimensional block of paper with six sides. However, if you “stacked” a thousand mathematical planes together, then you would still only have a two-dimensional plane that doesn’t have any sides at all. But this can all be as easy to lose track of as rebates and “tips”.

Now let’s return to Cantor’s discovery about how a one-dimensional line segment has the same number of mathematical points on it as are on a two-dimensional plane or in a three-dimensional cube the size of the Milky Way. That means that all the information is there, available to be discovered and read, regardless of whether we discover it and read it. It means “book” is a singular phenomenon.

If, like Cantor, you have trouble believing it, then try this out: think again of a two-dimensional mathematical plane. We imagine ourselves looking down on the plane, or looking at it from an angle, or perhaps passing through the plane to look at it from below. Regardless, we can only imagine it from the vantage point of three-dimensional space. Nobody can actually think in two dimensions. We can do a lot of two-dimensional math, but our vantage point will always be three-dimensional. There is, in fact, an enormous branch of mathematics called non-Euclidean geometry in which two-dimensional math uses three-dimensional space. The Möbius Strip is an example.

Now imagine a one-dimensional line, shooting from infinity to infinity. We can imagine orbiting around the line or moving along beside it. Regardless, we can still only imagine it from the vantage point of three-dimensional space. Nobody can actually think in one dimension, even when doing arithmetic.

Thus, even though each of the three dimensions is perfectly unique and coherent in and of itself, the three only exist—even in our minds—as a single phenomenon. Just as we recognized that even linguistic vocabulary is only coherent from a multi-dimensional context (such as when we considered the example of the words freedom, knowledge, and determinism), so also mathematics only exists in three dimensions. We might also compare the three dimensions to how white light is composed of red light, green, light, and blue light. (In case you don’t know your optic physics: although blue and yellow paints mix to make green, when it comes to light waves it is green and red light that mix to make yellow. If something is painted yellow, then it will absorb blue light while reflecting red and green light back into our eyes.) Children cannot learn the meaning of the word blue unless they also learn the meaning of red, yellow, white, green, etc.

Furthermore, even though each of the three dimensions is unique and coherent in and of itself, each of the three contains the whole. For example, all mathematical truth can be digitized and translated into a one-dimensional linear sequence. Again, the DNA code is a prime example of this, as is a child’s ability to learn to translate massive amounts of three-dimensional light data into small digital color words. And it is why the interactions of the sun and the planets in our solar system can be translated into elegant, linear sentences like “Energy equals mass times the speed of light squared.”

A Dynamic Book

Furthermore, none of the information that we find in nature is static. We are only scratching the surface here but suffice it to say that just as any book is only coherent when the words are read in sequence over a period of time, so also any mathematical or scientific equation reflects movement through time. And so, as Kepler and Boyle said, the book of nature is always inviting us and inspiring us. Even its unending constants (such as 3.14159…) confront us with eternity.

Now we have absolutely no idea what time actually is. Einstein showed that it is analogous to the three physical dimensions since passage through time slows down as passage through physical space speeds up. But calling it a fourth dimension is just an analogy—a very coherent and effective analogy, comparable to how money is a very coherent and effective analogy. You cannot see, hear, feel, taste, or smell the value of money. You can only believe by faith what it represents. (Economists usually use the term confidence rather than faith.) Furthermore, there are many ways economists can use a mathematical tool called dimensional analysis, for there are many dimensions to economics—such as interest and inflation, the later of which slows down as the former speeds up. Nevertheless, at the end of the day, our belief in the value of money is still a matter of faith. Yes, it is a rock-solid faith based upon hundreds of thousands of testimonies, but it is faith nonetheless.

Similarly, we can only believe by faith that time passes. As bizarre as that may sound, many scientists argue that time is not, in fact, passing and that the impression of an objective flow time is an illusion. Instead, they say that the flow of time is a subjective experience that our brains create and constantly adjust. Why do they say this? Well just as time appears to pass as you read this sentence, so also it seems to take approximately eight minutes and twenty seconds for light from the sun to reach us and it seems to take millions of years for light from the stars to reach us. Therefore, if time-flow were real, that would mean that when you go out at night and stare at the stars then you would be looking directly at ancient history. Therefore, there is no such thing as a cosmic, universal NOW. And if there is no now, so also there is no past or future or flow. Therefore, whatever time is, it is not changing and flowing. Instead, we are effectively fabricating that idea.

One of the leading proponents of this view is Italian theoretical physicist Carlo Rovelli, the founder of what is called the Loop Quantum Gravity theory of physics and the director of the quantum gravity research group at the Centre for Theoretical Physics at Aix-Marseille University. The author of some very popular books, including Reality Is Not What It Seems and The Order of Time, he says that since physicists do not necessarily need a flow of time in their equations, we should conclude that it is an illusory, human-made phenomenon. He says that our neurological illusion of “time flow” must have emerged in evolution to give us a useful though artificial and blurred perception of the world. But as to how this illusion works, he tosses that question to neuroscientists to explain:

I suspect that what we call the “flowing” of time has to be understood by studying the structure of our brain rather than by studying physics: evolution has shaped our brain into a machine that feeds off memory in order to anticipate the future. This is what we are listening to when we listen to the passing of time. Understanding the “flowing” of time is therefore something that may pertain to neuroscience more than to fundamental physics. Searching for the explanation of the feeling of flow in physics might be a mistake.[xvii]

Although it may feel disorienting and perhaps even depressing to hear that time is not a fundamental, objective part of life, Rovelli says that such discouragement is easily remedied. Since the illusion of the flow of time is merely a matter of brain chemistry, that chemistry can be manipulated. “It only takes a few micrograms of LSD to expand our experience of time to an epic and magical scale.”[xviii] In fact, he credits the psychedelic drug with inspiring his interest in physics in general and in the nature of time in particular. As he recounts the very first time he took it:

It was an extraordinarily strong experience that touched me also intellectually. Among the strange phenomena was the sense of time stopping. Things were happening in my mind but the clock was not going ahead; the flow of time was not passing any more. It was a total subversion of the structure of reality… And I thought: “Well, it’s a chemical that is changing things in my brain. But how do I know that the usual perception is right, and this is wrong? If these two ways of perceiving are so different, what does it mean that one is the correct one?”[xix]

What does it mean to say that one is the correct one? Contrary to Rovelli, many scientists have concluded that it means there is a self-evident, objective reality for which they may not necessarily be able to author the explanation. They can know that some things are true even if they cannot necessarily explain them in the laboratory. In fact, as Professor Muller explains, the only reason not to believe in the flow of time is because one wants to cling to the presuppositions of physicalism (a.k.a. materialism)—something that Einstein himself realized was futile.

Atheists mocked Einstein for drifting away from physics and developing a religious faith in his later years. But they never spoke to his concern that science could not address even these most essential aspects of the world: the flow of time and the meaning of now. Many scientists assume that something that cannot be probed by physics is not part of reality. Is that statement a testable claim, or a religious belief itself? Philosophers give this dogma the name physicalism. Is there a way to test, to prove, a faith that physics encompasses all? Or is such a belief expected for all physicists, just as being Christian has been an informal but effective requirement to qualify as a potential US president? If you challenge physicalism, do you risk being mocked for your drift toward religion, as Einstein was?[xx]

Speaking of presidents and the flow of time, consider that it takes faith to believe, for example, that George Washington was the first president of the United States—that he actually lived and worked in an earlier time in a place called The United States of America. After all, we cannot actually see him being president. Instead, we can only believe what is written in the historical record. (If that sounds like a silly observation, consider how millions of people doubt the more recent, much more detailed historical record of the Holocaust of World War II.) We can also consider the circumstantial evidence for George Washington’s presidency, for there is a direct link between the processes that installed him in office to the processes that installed President Donald Trump.

And just as we believe narratives in American history based upon evidence, so also we believe narratives in the flow of natural history based upon evidence. For if science has taught us anything at all over the past 2000 years, it has taught us to have faith that if we study nature carefully enough, if we look and listen long enough, we will always be able to discover and decipher rational explanations. We will discover information that narrates the unfolding of the creation. And we will inevitably ask who the author of it all is.

[i] As stated by William H. Hobbs, “The Making of Scientific Theories,” Address of the president of Michigan Academy of Science at the Annual Meeting, Ann Arbor (28 Mar 1917) in Science (11 May 1917), N.S. 45, No. 1167, 443.

[ii] Galileo Galilei, The Assayer, (1623).

[iii] https://www.youtube.com/watch?v=ZF3CgNpkSTQ&feature=youtu.be

[iv] https://evolutionnews.org/2020/06/mathematics-biology-and-awesome-wonder/

[v] Martin Rees, Just Six Numbers: The Deep Forces That Shape the Universe (New York: Basic Books, 2000), 1.

[vi] Jorge Cham and Daniel Whiteson, We Have No Idea (New York: Riverhead Books, 2017), 98.

[vii] https://www.newworldencyclopedia.org/entry/Johannes_Kepler

[viii] “Letter (9/10 Apr 1599) to the Bavarian chancellor Herwart von Hohenburg.” Collected by Carola Baumgardt and Jamie Callan in Johannes Kepler Life and Letters (1953), 50.

[ix] Robert Boyle, Some Motives and Incentives to the Love of God (1659), 56-7.

[x] Robert Boyle, “Some considerations touching the usefulness of experimental philosophy” (1663). Quoted by Peter Gay in The Enlightenment (1977), 140.

[xi]  Paul Dirac, “The Evolution of the Physicist’s Picture of Nature.” (May 1963). Scientific American. Retrieved 4 April 2013.

[xii] Richard Feynman, The Character of Physical Law, Modern Library; Modern Library ed. 1994, chap. 2.

[xiii] Richard A. Muller, Now: The Physics of Time. (New York: W. W. Norton & Company, 2016). Kindle Locations 4653-4657.

[xiv] Martin Rees, Just Six Numbers: The Deep Forces That Shape the Universe (New York: Basic Books, 2000), 178-179.

[xv] “I see it but I don’t believe it!”


[xvii] Carlo Rovelli, “On the Nature of Time”, Financial Times, April 20, 2018. https://www.ft.com/content/ce6ef7b8-429a-11e8-93cf-67ac3a6482fd

[xviii] Simon Carnell and Erica Segre, “Interview with Carlo Rovelli”, The Guardian, April 14, 2018. https://www.theguardian.com/books/2018/apr/14/elastic-concept-order-of-time-carlo-rovelli

[xix] Charlotte Higgins, “’There is no such thing as past or future’: physicist Carlo Rovelli on changing how we think about time”, The Guardian (April 14, 2018). https://www.theguardian.com/books/2018/apr/14/carlo-rovelli-exploding-commonsense-notions-order-of-time-interview

[xx] [xvii] Richard A. Muller, Now: The Physics of Time. (W. W. Norton & Company, 2016) Kindle Edition.

Recent Posts